
jsGraph Documentation

Norman Pellet

Nov 01, 2020

CONTENTS:

1 Introduction to jsGraph 1
1.1 TL;DR Show me an example ! . 1

2 Installation 5
2.1 Install with npm (recommended) . 5
2.2 Download from the Github repository . 5
2.3 Manual Download . 5
2.4 Include jsGraph in your projects . 6

3 Getting started 9
3.1 Graph Constructor method . 9
3.2 Adding a serie . 13

4 Indices and tables 19

i

ii

CHAPTER

ONE

INTRODUCTION TO JSGRAPH

jsGraph is a browser-based data plotter. It allows you to display scientific-looking charts and export them in the
SVG vector format for high-quality scientific publishing. However, it is also a lot more than that. It implements
fast algorithms that redraw your datasets as fast as possible, allowing redrawings to occur in a fraction of a second.
Because it is implemented in SVG, jsGraph is an ideal candidate for highly interactive browser-based graphs. You can
select series, data points, subscribe to events, zoom in and out, drag the viewing window around, . . .

Here are some highlights of the library:

• Scientific-style : Display graphs that are sober looking, but that show exactly what you need.

• Fast rendering : Millions of points can be drawn in a fraction of a second. We implemented multilevel down-
sampling algorithms that allow the fastest rendering time possible. It is expecially effective with the zoom
plugin. When zoomed out, only the downsampled version of your data set gets displayed. As you zoom in, the
resolution gets finer up to the one defined by your data set.

• Rich API : Control exactly how you want your axes, series and annotations to be displayed. We hand you
the keys to the finest possible level of control. Of course, you can also use a higher level API for simpler
manipulation.

• Multiple axes : Series are referenced to axes, which can be placed at the top, bottom, left or right of the graph.
You can even have multiple axes on the same side, master-slave axes (for unit conversion, for example) or
floating axes, displayed in the middle of the graph.

• Various series : jsGraph allows you to display line plots, scatter plots, category plots or box plots, or to combine
them together.

1.1 TL;DR Show me an example !

Here is the exact source code that generated this example, with comments

// Let's take the j-V curve of a solar cell as an example:

// Let's assume we have it in a javascript array, in the format [[x1, x2, ... xn],
→˓[y1, y2, ... yn]]
const data = [[-1, -0.95, -0.8999999999999999, -0.8499999999999999, -0.
→˓7999999999999998, -0.7499999999999998, -0.6999999999999997, -0.6499999999999997, -0.
→˓5999999999999996, -0.5499999999999996, -0.4999999999999996, -0.4499999999999996, -0.
→˓39999999999999963, -0.34999999999999964, -0.29999999999999966, -0.24999999999999967,
→˓ -0.19999999999999968, -0.1499999999999997, -0.09999999999999969, -0.
→˓049999999999999684, 3.191891195797325e-16, 0.05000000000000032, 0.10000000000000032,
→˓ 0.15000000000000033, 0.20000000000000034, 0.25000000000000033, 0.3000000000000003,
→˓0.3500000000000003, 0.4000000000000003, 0.4500000000000003, 0.5000000000000003, 0.
→˓5500000000000004, 0.6000000000000004, 0.6500000000000005, 0.7000000000000005, 0.
→˓7500000000000006, 0.8000000000000006, 0.8500000000000006, 0.9000000000000007, 0.
→˓9500000000000007, 1.0000000000000007, 1.0500000000000007, 1.1000000000000008, 1.
→˓1500000000000008, 1.2000000000000008, 1.2500000000000009, 1.300000000000001, 1.
→˓350000000000001, 1.40000000000000, 1.450000000000001], [-20.499747544838275, -20.
→˓499659532985874, -20.499540838115898, -20.49938076340126, -20.499164882847428, -20.
→˓4988737412163, -20.498481100712695, -20.497951576424207, -20.497237447419362, -20.
→˓49627435611903, -20.494975508366757, -20.493223851506187, -20.490861525550883, -20.
→˓48767563678195, -20.483379071684652, -20.477584622168607, -20.469770090226536, -20.
→˓45923122725008, -20.44501826687575, -20.425850331676905, -20.4, -20.365137630064282,
→˓ -20.318121411753218, -20.25471422548477, -20.16920179137358, -20.053877696141516, -
→˓19.89834888820463, -19.68859905188818, -19.405725451695528, -19.024235410553235, -
→˓18.509748899999998, -17.81590019886833, -16.88015939675398, -15.618197174567083, -
→˓13.916285014032407, -11.621045940111184, -8.52563212933044, -4.351083704794043, 1.
→˓2788112346498295, 8.87142097487483, 19.11099441051224, 32.920325817120975, 51.
→˓543917424350724, 76.66013443300987, 110.53245992908506, 156.21348084543214, 217.
→˓8199882640481, 300.90398420341603, 412.9530301645426, 564.065029038078]];;

(continues on next page)

1

jsGraph Documentation

(continued from previous page)

// Create a waveform, which is used to represent data in a general sense. It has also
→˓a few cool tricks
const wave1 = Graph.newWaveform().setData(data[1], data[0]);

// For example, you can duplicate it into a second wave and do some point-to-point
→˓mathematics, in this case calculate the power density
const wave2 = wave1.duplicate().math((x, y) => x * y);

// Let's create a new example and place it in the placeholder <div id="graph-example-1
→˓" />
var g = new Graph("graph-example-1", {});

// You need to set the size if the container doesn't have one already
g.resize(400, 300);

// Let us create a new serie, called "jV", with red thick line and markers
var jV = g

.newSerie("jV", {
lineColor: 'red',
lineWidth: 2,
markers: true,
// Setting the style of the markers
markerStyles: {

// For the default "unselected" style
unselected: {

// Default look
default: {

shape: 'rect',
strokeWidth: 1,
x: -2,
y: -2,
width: 4,
height: 4,
stroke: 'rgb(200, 0, 0)',
fill: 'white'

}
},
// Maybe we want to display only one marker every five points. Nothing

→˓easier !
modifiers: (x, y, index, domShape, style) => index % 5 == 0 ? style :

→˓false
}

})
.autoAxis() // Assign it automatically to the left and the bottom axis (which are

→˓created by default if they don't exist)
.setWaveform(wave1) // Assign a waveform to this serie

// How about a second serie ?
var pV = g

.newSerie("pV") // Give it a unique name, otherwise you'll overwrite the first one

.setXAxis(g.getXAxis()) // The x axis is the same...

.setYAxis(g.getRightAxis()) // But the y axis is different, let's get the first
→˓right axis (created by default)

.setWaveform(wave2); // And assign the second waveform

// How about some styling of the axes ?
(continues on next page)

2 Chapter 1. Introduction to jsGraph

jsGraph Documentation

(continued from previous page)

g
.getXAxis() // Retrieve the bottom axis
.setUnit("V") // Set the unit voltage
.setUnitWrapper("(", ")") // Wrap in parentheses ==> (V)
.setLabel("Voltage") // Show the axis label
.secondaryGridOff(); // Turn off the secondary grid

g
.getLeftAxis() // Retrieve the left axis
.setUnit("mA cm^-2")
.setUnitWrapper("(", ")")
.setLabel("Current density")
.secondaryGridOff()
.forceMin(-25) // Force the minimum of the axis
.forceMax(60); // And its maximum

g
.getRightAxis()
.setUnit("mW cm^-2")
.setUnitWrapper("(", ")")
.setLabel("Power density")
.gridsOff(); // Do not display any grid for the right axis

// Adds some spacing to the right of the axis. This is 30% of the "data width" of the
→˓axis (which is the max value - the min value for all series sharing this axis)
g.getBottomAxis().setAxisDataSpacing(0, 0.3);

// We want the 0 of the right axis to match the 0 of the left axis. It's much more
→˓natural like that
// Use .adaptTo() to enforce this behaviour adaptTo(otherAxis, myRef, otherRef,
→˓clamp)
// The clamp "min" basically says that the normal scaling behaviour applies to the 0
→˓and to the min value of the axis. The max value is therefore the one calculated as
→˓a function of the master axis (the left one)
g.getRightAxis().adaptTo(g.getLeftAxis(), 0, 0, "min");

// Some more styling, note how you can change the color of the axis, the ticks, the
→˓tick labels and the axis label
g

.getLeftAxis()

.setAxisColor('red')

.setPrimaryTicksColor('red')

.setSecondaryTicksColor('rgba(150, 10, 10, 0.9)')

.setTicksLabelColor('#880000')

.setLabelColor('red');

// autoscale has to be called before the first rendering when more than one serie was
→˓added
g.autoScaleAxes();

// And finally, let's draw it !
g.draw();

1.1. TL;DR Show me an example ! 3

jsGraph Documentation

4 Chapter 1. Introduction to jsGraph

CHAPTER

TWO

INSTALLATION

2.1 Install with npm (recommended)

Installing jsGraph from npm is an easy way to install jsGraph and keep it up to date

npm i node-jsgraph

2.1.1 Default file

If you use a module resolver, then you should be aware that const Graph = require(“jsGraph”); will
load the minified UMD file with ES6 polyfills.

2.2 Download from the Github repository

The project is hosted on Github and the source code is available open source and released under the MIT licence.

View on github

2.2.1 Releases

We use github releases to ship the distribution package. Check out the Release page to download the latest release.

2.3 Manual Download

jsGraph can be downloaded and installed manually or via the npm package manager. The project is hosted on Github
and the distribution files can be found there. jsGraph has zero dependencies and does not rely on any CSS files.

We use Universal Module Definitions to ship jsGraph. That means the library is compatible with AMD definition,
CommonJS definition and defaults to Browser global when none exist. Select the version to include as a function of
your needs:

5

http://npmjs.org
https://github.com/NPellet/jsGraph
https://github.com/NPellet/jsGraph/releases

jsGraph Documentation

2.3.1 Minfied version

The full-featured, compact version of jsGraph, shipped with all plugins, shapes and series available. This version ships
with Universal Module Definition (see below).

Download minified

2.3.2 Development code

The compiled but not uglified source code can be used for testing purposes and bug reporting. Similarly to the minified
version, this file ships with Universal Module Definition.

Expanded version

2.3.3 ES 6 version

The source code without ES6 transpilation. Does not include any ES6 polyfills and therefore targets ES6-compatible
browsers. This version ships with Universal Module Definition

Download ES6 minified

2.3.4 Module bundle

For browser that support ES6 modules (or if you want to use as such with your own packager), you can directly include
the module file:

jsgraph-module.min.js

2.4 Include jsGraph in your projects

2.4.1 Universal module definitions

Browser global

Here is how to include jsGraph in your browser using the global object create. The following creates the `Graph`
object on the `window` level of your browser:

<head>
<script src="path/to/jsgraph/jsgraph.min.js"></script>
<!-- Creates the public Graph object -->

</head>

Which allows you to use it as such:

<body>
<script>

const graph = new Graph(/* ..options.. */);
</script>

</body>

6 Chapter 2. Installation

https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph.min.js
https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph.js
https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph-es6.min.js
https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph-module.js

jsGraph Documentation

AMD definition

If you are using an AMD loader such as RequireJS, you can still use jsGraph:

The following versions are browser-ready and creates the `Graph` object on the `window` level of your browser:

<head>
<script src="path/to/require/js"></script>

</head>
<body>

<script>
require(['path/to/jsgraph.min'], function(Graph) {

<!-- Creates the local Graph object -->
const graph = new Graph(/* ..options.. */);

});
</script>

</head>

Obviously, in a real-life example, you would use `define` in your module and load jsGraph as a dependency.

CommonJS definition

If you create your own bundle using Webpack, Rollup, Gulp or other, then you can simply the CommonJS definition:

const Graph = require('path/to/jsGraph');
// Use Graph
const graph = new Graph(/* ..options.. */);

2.4.2 ES 6 module definition

If you’re working with ES6 modules you can use the module files as such:

In a browser

<body>
<!--Your page-->
</body>
<script type="module" src="./path/to/jsGraph/jsgraph-module.min.js"></script>

From another module

In this case, Graph is default export of the module:

import Graph from 'path/to/jsGraph/jsgraph-module.min.js';

2.4. Include jsGraph in your projects 7

jsGraph Documentation

8 Chapter 2. Installation

CHAPTER

THREE

GETTING STARTED

Note: TL,DR

let graph = new Graph(htmlDivID, someOptions);
let wave1 = graph.newWaveform().setData(yDataAsArray, xDataAsArray);
let serie = graph.newSerie('someSerieName').setWaveform(wave1).autoAxis();
graph.draw();

After you managed to install jsGraph and load into your browser, it’s time to display your first graph.

3.1 Graph Constructor method

The graph constructor takes the following possible forms

const graph = new Graph(wrapper?, options?, axes?);

where all three options are actually optional

3.1.1 DOM Wrapper

The Wrapper is the DOM element into which jsGraph will inject some SVG and HTML code. It can be the id of the
container, or the html element itself:

<div id="graph-container" />

const graph = new Graph("graph-container");
// ...or
const container = document.getElementById('graph-container');
const graph = new Graph(container);

// ...or, from jQuery
const container = $("#graph-container");
const graph = new Graph(container.get());

You can delay the use of the wrapper and call the setWrapper method later on:

graph.setWrapper(domWrapper);

9

jsGraph Documentation

If no width / height options are passed in the constructor, jsGraph will attempt to find out the dimension of the
container, using getComputedStyle.

If it doesn’t work out, you will need to call graph.resize(widthInPx, heightInPx) before you call the
draw() method.

3.1.2 Options

jsGraph receives a variety of options that can be set in the constructor. Most options occur with the axes or the series,
but the graph itself takes a few of them. Here’s a full example of them with their default value:

const GraphOptionsDefault = {
title: '', // The title of the graph

paddingTop: 30, // Top padding, important if there's a title
paddingBottom: 5,
paddingLeft: 20,
paddingRight: 20,

// If you want to add dummy lines to make the graph appear as a rectangle
close: {

left: true,
right: true,
top: true,
bottom: true

},

// Color of the closing lines
closeColor: 'black',

// Default font size and font used for the whole graph. Can be overridden for
→˓each component

fontSize: 12,
fontFamily: 'Myriad Pro, Helvetica, Arial',

// Refer to the interaction documentation to understand those
plugins: {},
mouseActions: [],
keyActions: [],

// Where clicking somewhere on the graph unselects the shape
shapesUnselectOnClick: true,

// Whether there can be only one shape selected at the same time
shapesUniqueSelection: true,

// Axes. Continue reading to understand this syntax
axes: {}

};

10 Chapter 3. Getting started

https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle

jsGraph Documentation

3.1.3 Axes

The axes settings can also be part of the constructor. Either use them as part of the options, under the key axes , or,
for legacy reasons, as part of the third argument in the constructor.

Here’s the syntax to use:

// Do not use const, read why
let axes = {

top: [
{ /* axis definition */ },
{ /* a second top axis definition */ }

],
bottom: [],
left: [

{ /* a right axis definition */ }
],
right: []

};

jsGraph does not make a copy of this object. Also, options are pretty dynamic, so it may be that jsGraph fills those
objects with internal values. This is useful when you want to dump the axis object, save it, and reload it some other
time.

Axis definition

Here are the default options that you may override for each axis:

let axisDefault = {
// Give it a unique name to retrieve it later
name: undefined,

// Value of the axis label
labelValue: '',

// You can put false here if you decide to use the axis but not to display it
display: true,

// Flip the axis, where the high-end value is to the right or the bottom, and the
→˓low-end value to the left / top

flipped: false,

// Use this to draw a vertical or horizontal line at that value. For example, for
→˓a straight line at 0, use lineAt: 0

lineAt: false,

// Adds a certain percentage of padding to the axis, with respect to the min/max
→˓values provided by the series.

axisDataSpacing: { min: 0.1, max: 0.1 },

// This can be used to display the value differently. More on that later
unitModification: false,

// Display the primary grid, corresponding to the primary ticks (the ones with
→˓labels)

primaryGrid: true,

(continues on next page)

3.1. Graph Constructor method 11

jsGraph Documentation

(continued from previous page)

// Display the secondary grid, corresponding to the secondary ticks
secondaryGrid: true,

// Self-exlanatory grid styling
primaryGridWidth: 1,
primaryGridColor: '#f0f0f0',
primaryGridDasharray: undefined,
primaryGridOpacity: undefined,
primaryTicksColor: 'black',

secondaryGridWidth: 1,
secondaryGridColor: '#f0f0f0',
secondaryGridDasharray: undefined,
secondaryGridOpacity: undefined,
secondaryTicksColor: 'black',

// Use true to hide the axis when all the series associated to it are hidden
hideWhenNoSeriesShown: false,

// Offset the low-end value of the graph to 0
shiftToZero: false,

// Tick positions with respect to the axis line: TICKS_INSIDE, TICKS_CENTERED,
→˓TICKS_OUTSIDE are possibilities

tickPosition: Graph.TICKS_INSIDE,

// Approximate number of primary ticks to display on the whole axis. It is an
→˓indication that jsGraph works with, but when working with decimal values,
→˓variations can occur

nbTicksPrimary: 3,

// Approximate number of secondary ticks to display between each primary tick
nbTicksSecondary: 10,

// Use scientific scaling, where values of the ticks are displayed in the
→˓scientific notation

scientificScale: false,

// Use a value to force the scientific exponent, rather than letting jsGraph
→˓determine the best one

scientificScaleExponent: false,

// Engineering scale is similar to scientific scale, but only with exponents in
→˓multiples of 3. (ug, mg, g, kg, ...)

engineeringScale: false,

// The following three options scale the value of the ticks, when scientific
→˓scaling is off

// Scale the value of the tick by that factor. Useful for unit conversion
ticklabelratio: 1,
// Multiplies the tick values by 10^x, where x is the exponential factor
exponentialFactor: 0,
// Same as the exponentialFactor, but also applied to the label itself, when

→˓using scientific scaling
exponentialLabelFactor: 0,

(continues on next page)

12 Chapter 3. Getting started

jsGraph Documentation

(continued from previous page)

// Display the axis as a log scale
logScale: false,

// Force the min and the max value. Zooming is still possible, but the min/max
→˓values provided by the series become irrelevant

forcedMin: false,
forcedMax: false,

// You can use this setting to not display the axis over the full width / height
→˓of the graph. Value in normalized percentage (0 = 0%, 1 = 100%)

span: [0, 1],

// Set the unit of the axis
unit: false,

// Wrap it in the following string
unitWrapperBefore: '',
unitWrapperAfter: '',

// Add the unit in each tick
unitInTicks: false,

// Adjust the offset between the tick and its label
tickLabelOffset: 0,

// You can display a katex formula as the label, more on this later
useKatexForLabel: false,

// Sets the upper bond that the axis can reach and disregards the value given by
→˓the series if their are higher/lower

highestMax: undefined,
lowestMin: undefined

};

3.2 Adding a serie

Obviously the first thing we’ll want to do is to create a new serie. But before that, we need to understand the concept
of waveforms

3.2. Adding a serie 13

jsGraph Documentation

3.2.1 Understanding waveforms

Waveforms are not much more than a suger coating over standard javascript arrays. In their more general sense they
represent actual data to be plotted. However they provide a bunch of useful features which target handling the data,
and therefore are independent of the serie itself, which aims to display that data.

Create a waveforms

Nothing simpler than creating a waveform. The Graph object exposes a shortcut to the constructor using

let waveform = Graph.newWaveform();

XY waveforms

XY waveforms are perhaps the most obvious one. It’s a bunch of Y data corresponding to a bunch of X data. Whether
they represent scattered data or should be linked with a line is irrelevant.

Note: When used to display a line data and when it can be determined that the x values are monotoneously increasing,
jsGraph decreased the rendering time by ignoring the data before the minimum bound of the x axis and the data above
the maximum bound of that same axes. Obviously there are a lot more optimisation at play, but that’s just one of
them. . .

To set the XY data to a waveform, use the setData method:

waveform.setData(yArray, xArray);

X as a waveform

In this format, jsGraph actually maintains two waveforms, the main one for the y data set, and one for the x dataset. It
therefore also allows you to do the following

// given xWaveform, yWaveform
xWaveform.setData(xArray);
yWaveform.setData(yArray);
yWaveform.setXWaveform(xWaveform);
xWaveform.math(/*...*/) // to apply math of the x data set

Y waveforms

Y waveforms occur when the interval between each data point is constant. The offset and scaling between the points
can be set either in the constructor or using the .rescaleX method

let wave1 = Graph.newWaveform(yDataAsArray, offset, scale);

// or
wave1.rescaleX(offset, scale);

The first y value will be at offset, the second at offset + scale, the third at offset + scale * 2, etc.

14 Chapter 3. Getting started

jsGraph Documentation

Note: A third waveform type exists: Hash waveforms. They are used to represent series that go in a bar chart (or
category plot). As its name indicates, it doesn’t take (x,y) values, but a hashmap, or more generally a javascript
object:

const wave = Graph.newWaveformHash(); // Create the waveform
wave.setData({ categoryA: yVal, categoryB: yVal2 }); // Setting the data

3.2.2 Creating a new serie

To create a new serie, simply use the graph.newSerie method:

let serie = graph.newSerie(serieName, serieOptions, serieType);

The first argument is required, while the other two are optional and default to serieOptions: {} and
serieType: Graph.SERIE_LINE.

• The serie name must be unique. If you try to use the name of an existing serie, newSerie will simply return
the existing serie, and you may override it

• The serieType describes which type of serie you’re trying to add. Valid values are: ** Graph.
SERIE_LINE or "line" ** Graph.SERIE_SCATTER or "scatter" ** Graph.
SERIE_CONTOUR or "contour": To create contour lines ** Graph.SERIE_BAR or "bar": To use
with bar charts ** Graph.SERIE_BOX or "box": Box plots ** Graph.SERIE_LINE_COLORED
or "color": Colored line where each segment can have a different color (lower performance than
Graph.SERIE_LINE) ** Graph.SERIE_ZONE or "zone": Typically used to display min/max
values as a greyed area ** Graph.SERIE_DENSITYMAP: A density map (see the tutorial about how to
use density maps)

Hint: Most methods that apply to the series return the serie itself, allowing API calls to be chained:

let serie = graph.newSerie('name', {}, 'line').methodA().methodB().methodC();

Assigning axes to the serie

A serie needs to have an x and a y axis. They might not be displayed, but they must exist. Most jsGraph axis getters
create axes if they don’t exist, so don’t worry too much about that. If you would like to use the default axes, use

serie.autoAxis();
// or:
serie.autoAxes();

Important: The default axes are the left axis at index 0 and the bottom at index 0. They will be created
automatically if they don’t exist.

You may of course use other axes. For that, the setXAxis(axis) and setYAxis(axis) exist:

serie.setXAxis(graph.getBottomAxis(1)); // Get the second bottom axis
serie.setYAxis(graph.getRightAxis()); // Get the first right axisDataSpacing

(continues on next page)

3.2. Adding a serie 15

jsGraph Documentation

(continued from previous page)

// Don't do that:
serie.setXAxis(graph.getLeftAxis()); // Error ! Assigning an y axis while the serie
→˓expects and x axis

3.2.3 Drawing the graph

So far you haven’t asked the graph to draw anything. You merely created object and told jsGraph how you wanted to
render them. For the final rendering use:

graph.draw();

3.2.4 Boilerplate example

Summing up everything we’ve done, it all boils down to a few lines code. Consider the following complete example:

var g = new Graph("graph-example-gettingstarted-1", {});
g.resize(400, 300).newSerie('serieName')

.setWaveform(Graph.newWaveform().setData([1, 2, 3], [4, 5, 6]))

.autoAxis();
g.draw();

This code would display the following basic graph:

3.2.5 Redrawing methods

To redraw the method, you can rebind the data to the waveform, and the waveform to the serie:

waveform.setData(dataY, dataY); // Rebinding arrays
serie.setWaveform(waveform); // Rebinding waveform
graph.autoscaleAxes(); // Optional, but rescales the axes to fit the new (?) min/max
→˓values
graph.draw();

Rebinding the data is not an computationnally expensive data. However, sometimes you may loose track of dataY
and dataX.

In this case, you can also directly mutate the arrays and not rebind them to the serie. It may be useful if you lose track
of where the arrays are. That’s not a problem for jsGraph, but it becomes your responsability to tell the waveform, the
serie and the graph that the data has changed.

If you’re not sure whether the min / max values have changed:

waveform.mutated(); // Tell the waveform to recompute the min/max
serie.dataHasChanged(); // Tell the serie that the data has changed
graph.updateDataMinMaxAxes(); // Tell the graph that there may be new min max values
graph.autoscaleAxes();
graph.draw();

If you are sure that the min/max values haven’t changed:

s.dataHasChanged(); // Flag the serie for a redraw
graph.draw();

16 Chapter 3. Getting started

jsGraph Documentation

Warning: Even if you do not wish to do call autoscaleAxes, and in the case where the min/max of the data
may have changed, you need to call the mutated method on the waveform and the updateDataMinMaxAxes
on the graph object.

Demonstration

const graph = new Graph("graph-example-gettingstarted-2");
graph.resize(400, 300);

let x = [1, 2];
let y = [1, 2];
let w = Graph.newWaveform().setData(y, x);
let s = graph.newSerie('s').setWaveform(w).autoAxis();
graph.draw();

let i = 0;
setInterval(function () {

if (i % 100 < 50) {
x.push(i % 100 + 3);
y.push(i % 100 + 3);

} else {
x.pop();
y.pop();

}
i++;

w.mutated();
s.dataHasChanged();
graph.updateDataMinMaxAxes();
graph.autoscaleAxes();
graph.draw();

}, 200);

This code would display the following basic graph:

3.2. Adding a serie 17

jsGraph Documentation

18 Chapter 3. Getting started

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

19

	Introduction to jsGraph
	TL;DR Show me an example !

	Installation
	Install with npm (recommended)
	Download from the Github repository
	Manual Download
	Include jsGraph in your projects

	Getting started
	Graph Constructor method
	Adding a serie

	Indices and tables

