jsGraph Documentation

Norman Pellet

Feb 25, 2021

CONTENTS:

Introduction to jsGraph

1.1 TL;DRShowmeanexample !
Installation

2.1 Install with npm (recommended) L L e e e e
2.2 Download from the Github repository L e
2.3 Manual Download L e e
2.4 Include jsGraph in your projects o v v v it e e e e e e e e e e e
Getting started

3.1 Graph Constructormethod e e e e
32 Addingaserie e e e e
Styling series

4.1 Styleinheritance L. e e e
42 LINESETIES . . . v v v it e e e e e e e e e e e e
4.3 Scatter SEIIBS v v v v e e e e e e e e e e e e e e
4.4 Closingexample o 0 i e e e e e e e e e e e e e e
Axes spanning

5.1 Basicexample e e e e e e e e
5.2 Overlapping aXes o i e
Scientific axes

6.1 Setting axeS UNILS v v v v v it e
6.2 Enabling the scientific scaling L e
6.3 Usingunitdecades L L e e e e e e e e e e
6.4 Logscale L e

Indices and tables

—

AN L L D

O \&

19
19
21
22
25

27
27
28

31
32
32
33
33

35

CHAPTER
ONE

INTRODUCTION TO JSGRAPH

jsGraph is a browser-based data plotter. It allows you to display scientific-looking charts and export them in the
SVG vector format for high-quality scientific publishing. However, it is also a lot more than that. It implements
fast algorithms that redraw your datasets as fast as possible, allowing redrawings to occur in a fraction of a second.
Because it is implemented in SVG, jsGraph is an ideal candidate for highly interactive browser-based graphs. You can
select series, data points, subscribe to events, zoom in and out, drag the viewing window around, ...

Here are some highlights of the library:
* Scientific-style : Display graphs that are sober looking, but that show exactly what you need.

¢ Fast rendering : Millions of points can be drawn in a fraction of a second. We implemented multilevel down-
sampling algorithms that allow the fastest rendering time possible. It is expecially effective with the zoom
plugin. When zoomed out, only the downsampled version of your data set gets displayed. As you zoom in, the
resolution gets finer up to the one defined by your data set.

* Rich API : Control exactly how you want your axes, series and annotations to be displayed. We hand you
the keys to the finest possible level of control. Of course, you can also use a higher level API for simpler
manipulation.

* Multiple axes : Series are referenced to axes, which can be placed at the top, bottom, left or right of the graph.
You can even have multiple axes on the same side, master-slave axes (for unit conversion, for example) or
floating axes, displayed in the middle of the graph.

* Various series : jsGraph allows you to display line plots, scatter plots, category plots or box plots, or to combine
them together.

1.1 TL;DR Show me an example !

Here is the exact source code that generated this example, with comments

// Let's take the j-V curve of a solar cell as an example:

// Let's assume we have it in a javascript array, in the format [[x1, x2, ... xn],
=[yl, y2, ... yn]]
const data = [[-1, -0.95, -0.8999999999999999, -0.8499999999999999, -0.

—7999999999999998, -0.7499999999999998, -0.6999999999999997, -0.6499999999999997, -0.
—5999999999999996, -0.5499999999999996, -0.4999999999999996, -0.4499999999999996, -0.
—39999999999999963, -0.34999999999999964, -0.29999999999999966, -0.24999999999999967,
— —0.19999999999999968, -0.1499999999999997, -0.09999999999999969, -0.
—049999999999999684, 3.191891195797325e-16, 0.05000000000000032, 0.10000000000000032,
— 0.15000000000000033, 0.20000000000000034, 0.25000000000000033, 0.3000000000000003, .,
—0.3500000000000003, 0.4000000000000003, 0.4500000000000003, 0.5000000000000003, O.
—5500000000000004, 0.6000000000000004, 0.6500000000000005, 0.7000000000000005, O.

= 15060000006 00006, 0 8000000006000006, 08500000006 000006, 090000000001 Eontiiués onnext page)
—-9500000000000007, 1.0000000000000007, 1.0500000000000007, 1.1000000000000008, 1.

—-350000000000001, 1.40000000000000, 1.450000000000001], [-20.499747544838275, -20. 1
—499659532985874, -20.499540838115898, -20.49938076340126, -20.499164882847428, -20.
—4988737412163, -20.498481100712695, -20.497951576424207, -20.497237447419362, -20.

—49627435611903, -20.494975508366757, -20.493223851506187, -20.490861525550883, -20.
CAQTELETIRELRAALATQTOE 9N AQRVTONTIEQALED 920 ATTEQAECOOTEQENT 9290 ACO0T77NNO0ONDOECERE 9N

jsGraph Documentation

(continued from previous page)

// Create a waveform, which is used to represent data in a general sense. It has also,
—a few cool tricks
const wavel = Graph.newWaveform() .setData(datal[l], datalO0]);

// For example, you can duplicate it into a second wave and do some point-to-point,,
—mathematics, in this case calculate the power density
const wave2 = wavel.duplicate () .math((x, y) => x * vy);

// Let's create a new example and place it in the placeholder <div id="graph-example-1
">
var g = new Graph ("graph-example-1", {});

// You need to set the size if the container doesn't have one already
g.resize (400, 300);

// Let us create a new serie, called "jV", with red thick line and markers
var jV = g
.newSerie ("JV", {
lineColor: 'red',
lineWidth: 2,
markers: true,
// Setting the style of the markers
markerStyles: {
// For the default "unselected" style
unselected: {
// Default look

default: {
shape: 'rect',
strokeWidth: 1,
x: =2,
y: =2,
width: 4,
height: 4,

stroke: 'rgb(200, 0, O)",
fill: 'white'

by

// Maybe we want to display only one marker every five points. Nothing,,

—easier !
modifiers: (x, y, index, domShape, style) => index % 5 == 0 ? style : |
—false
}
1)
.autoAxis () // Assign it automatically to the left and the bottom axis (which are_

—created by default if they don't exist)
.setWaveform(wavel) // Assign a waveform to this serie

// How about a second serie ?
var pVvV = g
.newSerie ("pvV") // Give it a unique name, otherwise you'll overwrite the first one
.setXAxis (g.getXAxis()) // The x axis 1s the same...
.setYAxis (g.getRightAxis()) // But the y axis is different, let's get the first,
—right axis (created by default)
.setWaveform(wave2); // And assign the second waveform

// How about some styling of the axes ?

(continues on next page)

2 Chapter 1. Introduction to jsGraph

jsGraph Documentation

(continued from previous page)

S)
.getXAxis () // Retrieve the bottom axis
.setUnit ("V") // Set the unit voltage
.setUnitWrapper (" (", ")") // Wrap in parentheses ==> (V)
.setLabel ("Voltage") // Show the axis label
.secondaryGridOff (); // Turn off the secondary grid
g
.getLeftAxis () // Retrieve the left axis
.setUnit ("mA cm”-2")
.setUnitWrapper (" (", ")")
.setLabel ("Current density")
.secondaryGridOff ()
.forceMin (-25) // Force the minimum of the axis
.forceMax (60); // And its maximum
g
.getRightAxis ()
.setUnit ("mwW cm”-2")
.setUnitWrapper (" (", ")")

.setLabel ("Power density")
.gridsOff(); // Do not display any grid for the right axis

// Adds some spacing to the right of the axis. This is 30% of the "data width" of the,
—axis (which is the max value — the min value for all series sharing this axis)
g.getBottomAxis () .setAxisDataSpacing (0, 0.3);

// We want the 0 of the right axis to match the 0 of the left axis. It's much more_
—natural like that

// Use .adaptTo() to enforce this behaviour adaptTo(otherAxis, myRef, otherRef,
—clamp)

// The clamp "min" basically says that the normal scaling behaviour applies to the 0
—and to the min value of the axis. The max value is therefore the one calculated as_
—a function of the master axis (the left one)
g.getRightAxis () .adaptTo(g.getLeftAxis(), 0, 0, "min");

// Some more styling, note how you can change the color of the axis, the ticks, the
—tick labels and the axis label

g

—

.getLeftAxis ()

.setAxisColor ('red")

.setPrimaryTicksColor ('red")
.setSecondaryTicksColor ('rgba(150, 10, 10, 0.9)")
.setTicksLabelColor ("#880000")

.setLabelColor ('red'");

// autoscale has to be called before the first rendering when more than one serie was,
—added
g.autoScaleAxes () ;

// And finally, let's draw it !
g.draw () ;

1.1. TL;DR Show me an example ! 3

jsGraph Documentation

4 Chapter 1. Introduction to jsGraph

CHAPTER
TWO

INSTALLATION

2.1 Install with npm (recommended)

Installing jsGraph from npm is an easy way to install jsGraph and keep it up to date

’npm i node-jsgraph

2.1.1 Default file

If you use a module resolver, then you should be aware that const Graph = require (“jsGraph”); will
load the minified UMD file with ES6 polyfills.

2.2 Download from the Github repository

The project is hosted on Github and the source code is available open source and released under the MIT licence.

View on github

2.2.1 Releases

We use github releases to ship the distribution package. Check out the Release page to download the latest release.

2.3 Manual Download

jsGraph can be downloaded and installed manually or via the npm package manager. The project is hosted on Github
and the distribution files can be found there. jsGraph has zero dependencies and does not rely on any CSS files.

We use Universal Module Definitions to ship jsGraph. That means the library is compatible with AMD definition,
Common]S definition and defaults to Browser global when none exist. Select the version to include as a function of
your needs:

http://npmjs.org
https://github.com/NPellet/jsGraph
https://github.com/NPellet/jsGraph/releases

jsGraph Documentation

2.3.1 Minfied version

The full-featured, compact version of jsGraph, shipped with all plugins, shapes and series available. This version ships
with Universal Module Definition (see below).

Download minified

2.3.2 Development code

The compiled but not uglified source code can be used for testing purposes and bug reporting. Similarly to the minified
version, this file ships with Universal Module Definition.

Expanded version

2.3.3 ES 6 version

The source code without ES6 transpilation. Does not include any ES6 polyfills and therefore targets ES6-compatible
browsers. This version ships with Universal Module Definition

Download ES6 minified

2.3.4 Module bundle

For browser that support ES6 modules (or if you want to use as such with your own packager), you can directly include
the module file:

jsgraph-module.min.js

2.4 Include jsGraph in your projects

2.4.1 Universal module definitions
Browser global

Here is how to include jsGraph in your browser using the global object create. The following creates the * Graph”
object on the " window" level of your browser:

<head>
<script src="path/to/jsgraph/jsgraph.min.js"></script>
<!-- Creates the public Graph object —-—->

</head>

Which allows you to use it as such:

<body>
<script>
const graph = new Graph(/% ..options.. x*/);
</script>
</body>

6 Chapter 2. Installation

https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph.min.js
https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph.js
https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph-es6.min.js
https://raw.githubusercontent.com/NPellet/jsGraph/master/dist/jsgraph-module.js

jsGraph Documentation

AMD definition

If you are using an AMD loader such as RequirelS, you can still use jsGraph:

The following versions are browser-ready and creates the * Graph™ object on the " window" level of your browser:

<head>
<script src="path/to/require/js"></script>
</head>
<body>
<script>
require (['path/to/jsgraph.min'], function(Graph) {
<!-—- Creates the local Graph object —-->
const graph = new Graph(/% ..options.. x/);
1)
</secript>
</head>

Obviously, in a real-life example, you would use * define" in your module and load jsGraph as a dependency.

CommondS definition

If you create your own bundle using Webpack, Rollup, Gulp or other, then you can simply the CommonJS definition:

const Graph = require('path/to/jsGraph');
// Use Graph
const graph = new Graph(/# ..options.. x/);

2.4.2 ES 6 module definition

If you’re working with ES6 modules you can use the module files as such:

In a browser

<body>

<!--Your page—-—>

</body>

<script type="module" src="./path/to/jsGraph/jsgraph-module.min. js"></script>

From another module

In this case, Graph is default export of the module:

import Graph from 'path/to/jsGraph/jsgraph-module.min.js';

2.4. Include jsGraph in your projects 7

jsGraph Documentation

8 Chapter 2. Installation

CHAPTER
THREE

GETTING STARTED

Note: TL,DR

let graph = new Graph(htmlDivID, someOptions);

let wavel = graph.newWaveform() .setData(yDataAsArray, xDataAsArray);

let serie = graph.newSerie('someSerieName') .setWaveform(wavel).autoAxis();

graph.draw () ;

After you managed to install jsGraph and load into your browser, it’s time to display your first graph.

3.1 Graph Constructor method

The graph constructor takes the following possible forms

’const graph = new Graph(wrapper?, options?, axes?);

where all three options are actually optional

3.1.1 DOM Wrapper

The Wrapper is the DOM element into which jsGraph will inject some SVG and HTML code. It can be the id of the
container, or the html element itself:

<div id="graph-container" />

const graph = new Graph("graph-container");
// ...or
const container = document.getElementById('graph-container');

const graph = new Graph(container);

// ...or, from jQuery
const container = $("#graph-container");
const graph = new Graph(container.get());

You can delay the use of the wrapper and call the setWrapper method later on:

graph.setWrapper (domWrapper);

jsGraph Documentation

If no width / height options are passed in the constructor, jsGraph will attempt to find out the dimension of the
container, using getComputedStyle.

If it doesn’t work out, you will need to call graph.resize (widthInPx, heightInPx) before you call the
draw () method.

3.1.2 Options

jsGraph receives a variety of options that can be set in the constructor. Most options occur with the axes or the series,
but the graph itself takes a few of them. Here’s a full example of them with their default value:

const GraphOptionsDefault = {
title: '', // The title of the graph

paddingTop: 30, // Top padding, important if there's a title
paddingBottom: 5,

paddingLeft: 20,

paddingRight: 20,

// If you want to add dummy lines to make the graph appear as a rectangle
close: {

left: true,

right: true,

top: true,

bottom: true

}l

// Color of the closing lines
closeColor: 'black',

// Default font size and font used for the whole graph. Can be overridden for,,
—each component

fontSize: 12,

fontFamily: 'Myriad Pro, Helvetica, Arial',

// Refer to the interaction documentation to understand those
plugins: {},

mouseActions: [],

keyActions: [],

// Where clicking somewhere on the graph unselects the shape
shapesUnselectOnClick: true,

// Whether there can be only one shape selected at the same time
shapesUniqueSelection: true,

// Axes. Continue reading to understand this syntax
axes: {}

}i

10 Chapter 3. Getting started

https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle

jsGraph Documentation

3.1.3 Axes

The axes settings can also be part of the constructor. Either use them as part of the options, under the key axes , or,
for legacy reasons, as part of the third argument in the constructor.

Here’s the syntax to use:

// Do not use const, read why
let axes = {
top: [
{ /% axis definition %/ },
{ /» a second top axis definition */ }
1,
bottom: [],
left: [
{ /% a right axis definition =/ }
]I
right: []
bi

jsGraph does not make a copy of this object. Also, options are pretty dynamic, so it may be that jsGraph fills those
objects with internal values. This is useful when you want to dump the axis object, save it, and reload it some other
time.

Axis definition

Here are the default options that you may override for each axis:

let axisDefault {
// Give 1t a unique name to retrieve it later
name: undefined,

// Value of the axis label
labelvValue: '',

// You can put false here if you decide to use the axis but not to display it
display: true,

// Flip the axis, where the high-end value is to the right or the bottom, and the,
—low—end value to the left / top
flipped: false,

// Use this to draw a vertical or horizontal line at that value. For example, for,
—a straight line at 0, use lineAt: 0
lineAt: false,

// Adds a certain percentage of padding to the axis, with respect to the min/max_,
—values provided by the series.
axisDataSpacing: { min: 0.1, max: 0.1 1},

// This can be used to display the value differently. More on that later
unitModification: false,

// Display the primary grid, corresponding to the primary ticks (the ones with,,
—~labels)
primaryGrid: true,

(continues on next page)

3.1. Graph Constructor method 11

jsGraph Documentation

(continued from previous page)

// Display the secondary grid, corresponding to the secondary ticks
secondaryGrid: true,

// Self-exlanatory grid styling
primaryGridwidth: 1,
primaryGridColor: '"#f0£f0£f0"',
primaryGridDasharray: undefined,
primaryGridOpacity: undefined,
primaryTicksColor: 'black',

secondaryGridwidth: 1,
secondaryGridColor: '#f0£f0£f0"',
secondaryGridDasharray: undefined,
secondaryGridOpacity: undefined,
secondaryTicksColor: 'black',

// Use true to hide the axis when all the series associated to it are hidden
hideWhenNoSeriesShown: false,

// Offset the low-end value of the graph to 0
shiftToZero: false,

// Tick positions with respect to the axis line: TICKS_INSIDE, TICKS_CENTERED,
—TICKS _OUTSIDE are possibilities
tickPosition: Graph.TICKS_INSIDE,

// Approximate number of primary ticks to display on the whole axis. It is an_,
—indication that jsGraph works with, but when working with decimal values,
—variations can occur

nbTicksPrimary: 3,

// Approximate number of secondary ticks to display between each primary tick
nbTicksSecondary: 10,

// Use scientific scaling, where values of the ticks are displayed in the_
—scientific notation
scientificScale: false,

// Use a value to force the scientific exponent, rather than letting jsGraph,,
—determine the best one
scientificScaleExponent: false,

// Engineering scale is similar to scientific scale, but only with exponents in_
—multiples of 3. (ug, mg, g, kg, ...)
engineeringScale: false,

// The following three options scale the value of the ticks, when scientific,
—scaling is off

// Scale the value of the tick by that factor. Useful for unit conversion

ticklabelratio: 1,

// Multiplies the tick values by 10"x, where x is the exponential factor

exponentialFactor: 0,

// Same as the exponentialFactor, but also applied to the label itself, when,
—using scientific scaling

exponentiallabelFactor: 0,

(continues on next page)

12 Chapter 3. Getting started

jsGraph Documentation

(continued from previous page)

// Display the axis as a log scale
logScale: false,

// Force the min and the max value. Zooming is still possible, but the min/max_
—values provided by the series become irrelevant

forcedMin: false,

forcedMax: false,

// You can use this setting to not display the axis over the full width / height_,

—of the graph. Value in normalized percentage (0 = 0%, 1 = 100%)
span: [0, 1],

// Set the unit of the axis
unit: false,

// Wrap it in the following string
unitWrapperBefore: '',
unitWrapperAfter: '',

// Add the unit in each tick
unitInTicks: false,

// Adjust the offset between the tick and its label
tickLabelOffset: O,

// You can display a katex formula as the label, more on this later
useKatexForLabel: false,

// Sets the upper bond that the axis can reach and disregards the value given by,
—the series if their are higher/lower

highestMax: undefined,

lowestMin: undefined

}i

3.2 Adding a serie

Obviously the first thing we’ll want to do is to create a new serie. But before that, we need to understand the concept
of waveforms

3.2. Adding a serie 13

jsGraph Documentation

3.2.1 Understanding waveforms
Waveforms are not much more than a suger coating over standard javascript arrays. In their more general sense they

represent actual data to be plotted. However they provide a bunch of useful features which target handling the data,
and therefore are independent of the serie itself, which aims to display that data.

Create a waveforms

Nothing simpler than creating a waveform. The Graph object exposes a shortcut to the constructor using

let waveform = Graph.newWaveform();

XY waveforms

XY waveforms are perhaps the most obvious one. It’s a bunch of Y data corresponding to a bunch of X data. Whether
they represent scattered data or should be linked with a line is irrelevant.

Note: When used to display a line data and when it can be determined that the x values are monotoneously increasing,
jsGraph decreased the rendering time by ignoring the data before the minimum bound of the x axis and the data above
the maximum bound of that same axes. Obviously there are a lot more optimisation at play, but that’s just one of
them. ..

To set the XY data to a waveform, use the setData method:

waveform.setData (yArray, xArray);

X as a waveform

In this format, jsGraph actually maintains two waveforms, the main one for the y data set, and one for the x dataset. It
therefore also allows you to do the following

// given xWaveform, yWaveform

xWaveform.setData (xArray);

yWaveform.setData(yArray);

yWaveform.setXWaveform(xWaveform);

xWaveform.math(/*...+/) // to apply math of the x data set

Y waveforms

Y waveforms occur when the interval between each data point is constant. The offset and scaling between the points
can be set either in the constructor or using the . rescaleX method

let wavel = Graph.newWaveform(yDataAsArray, offset, scale);

// or
wavel.rescaleX(offset, scale);

The first y value will be at of fset, the second at of fset + scale,thethirdatoffset + scale * 2,etc.

14 Chapter 3. Getting started

jsGraph Documentation

Note: A third waveform type exists: Hash waveforms. They are used to represent series that go in a bar chart (or
category plot). As its name indicates, it doesn’t take (x,y) values, but a hashmap, or more generally a javascript
object:

const wave = Graph.newWaveformHash(); // Create the waveform
wave.setData ({ categoryA: yVal, categoryB: yvVal2 }); // Setting the data

3.2.2 Creating a new serie

To create a new serie, simply use the graph .newSerie method:

let serie = graph.newSerie(serieName, serieOptions, serieType);

The first argument is required, while the other two are optional and default to serieOptions: {} and
serieType: Graph.SERIE_LINE.

* The serie name must be unique. If you try to use the name of an existing serie, newSerie will simply return
the existing serie, and you may override it

* The serieType describes which type of serie you’re trying to add. Valid values are: ** Graph.
SERIE_LINE or "line" ** Graph.SERIE_SCATTER or "scatter" ** Graph.
SERIE_CONTOUR or "contour": To create contour lines ** Graph .SERIE_BAR or "bar": To use
with bar charts ** Graph.SERIE_BOX or "box": Box plots ** Graph.SERIE_LINE_COLORED
or "color": Colored line where each segment can have a different color (lower performance than
Graph.SERIE_LINE) ** Graph.SERIE_ZONE or "zone": Typically used to display min/max
values as a greyed area ** Graph.SERIE_DENSITYMAP: A density map (see the tutorial about how to
use density maps)

Hint: Most methods that apply to the series return the serie itself, allowing API calls to be chained:

let serie = graph.newSerie('name', {}, 'line') .methodA () .methodB().methodC();

Assigning axes to the serie

A serie needs to have an x and a y axis. They might not be displayed, but they must exist. Most jsGraph axis getters
create axes if they don’t exist, so don’t worry too much about that. If you would like to use the default axes, use

serie.autolAxis ();
// or:

serie.autolAxes ();

Important: The default axes are the left axis at index O and the bottom at index 0. They will be created
automatically if they don’t exist.

You may of course use other axes. For that, the setXAxis (axis) and setYAxis(axis) exist:

serie.setXAxis (graph.getBottomAxis(1)); // Get the second bottom axis
serie.setYAxis (graph.getRightAxis()); // Get the first right axisDataSpacing

(continues on next page)

3.2. Adding a serie 15

jsGraph Documentation

(continued from previous page)

// Don't do that:
serie.setXAxis (graph.getLeftAxis()); // Error ! Assigning an y axis while the serie_
—expects and x axis

3.2.3 Drawing the graph

So far you haven’t asked the graph to draw anything. You merely created object and told jsGraph how you wanted to
render them. For the final rendering use:

graph.draw () ;

3.2.4 Boilerplate example

Summing up everything we’ve done, it all boils down to a few lines code. Consider the following complete example:

var g = new Graph ("graph-example-gettingstarted-1", {});

g.resize (400, 300) .newSerie('serieName')
.setWaveform(Graph.newWaveform() .setData([1, 2, 31, [4, 5, 6]))
.autoAxis();

g.draw () ;

This code would display the following basic graph:

3.2.5 Redrawing methods

To redraw the method, you can rebind the data to the waveform, and the waveform to the serie:

waveform.setData (dataY, dataY); // Rebinding arrays

serie.setWaveform(waveform); // Rebinding waveform

graph.autoscaleAxes(); // Optional, but rescales the axes to fit the new (?) min/max_,
—values

graph.draw () ;

Rebinding the data is not an computationnally expensive data. However, sometimes you may loose track of datay
and dataX.

In this case, you can also directly mutate the arrays and not rebind them to the serie. It may be useful if you lose track
of where the arrays are. That’s not a problem for jsGraph, but it becomes your responsability to tell the waveform, the
serie and the graph that the data has changed.

If you’re not sure whether the min / max values have changed:

waveform.mutated(); // Tell the waveform to recompute the min/max
serie.dataHasChanged(); // Tell the serie that the data has changed
graph.updateDataMinMaxAxes (); // Tell the graph that there may be new min max values
graph.autoscaleAxes () ;

graph.draw() ;

If you are sure that the min/max values haven’t changed:

s.dataHasChanged(); // Flag the serie for a redraw
graph.draw () ;

16 Chapter 3. Getting started

jsGraph Documentation

Warning: Even if you do not wish to do call autoscaleAxes, and in the case where the min/max of the data
may have changed, you need to call the mut at ed method on the waveform and the updateDataMinMaxAxes
on the graph object.

Demonstration

const

graph.resize (400, 300);

let
let
let
let

x = [1, 2];

y = [1, 21;

w = Graph.newWaveform() .setData(y, Xx);

s = graph.newSerie('s').setWaveform(w) .autoAxis();

graph.draw () ;

let
set

by

i = 0;
Interval (function () {

if (1 $ 100 < 50) {

x.push(i % 100 + 3);

y.push(i % 100 + 3);
} else {

x.pop () ;

y.pop();

}

i++;

w.mutated () ;
s.dataHasChanged () ;
graph.updateDataMinMaxAxes () ;
graph.autoscaleAxes () ;
graph.draw () ;

200);

raph = new Graph ("graph-example-gettingstarted-2");
grap p

This code would display the following basic graph:

3.2.

Adding a serie

17

jsGraph Documentation

18 Chapter 3. Getting started

CHAPTER
FOUR

STYLING SERIES

Without style, a serie defaults to either a black line (for line series), or round dots for a scatter serie. In most cases this
behaviour is not enough, and we would like to be able to change the color, thickness, dashing/dotting, fill color, etc. ..
of the various series that we want to display.

To this purpose, jsGraph employs the notion of style, which is nothing else than a javascript object. A style is defined
by a name and a collection of attributes

Note: There are two default styles that ship with jsGraph and that are involved in the functionning of the library:

e unselected. This is the basic style that renders the serie by default. By default, when performing API calls
without setting the style, jsGraph assumes that you mean the unselected style

* selected. The style that is displayed when a serie, or, for a scatter plot, some points of the serie, is/are
selected. It inherits the style unselected (see below)

4.1 Style inheritance

jsGraph allows you to derive some styles from others. For example, is the style unselected and red look like that:

// unselected

const unselected = {
line: {
width: 3,

color: 'black'

}

// red
const red = {
line: {
color: 'red'

and that the following API calls are used:

serie.setStyle(unselected);

serie.setStyle(red, "red", "unselected"); // <== Red style inherits from Unselected_
—style

serie.setActiveStyle("red");

19

jsGraph Documentation

Then a thick red line that is 3px width will be displayed.

Warning: All styles must inherit from another one, up and until the style unselected. If no name is provided
as the third parameter of the set Style API call, unselected is assumed to be the base style.

4.1.1 Runtime inheritance

Styles are computed at runtime. In other words, taking the example that is discussed above, if the unselected style
is changed using an API call:

serie.setLineStyle("4,4", "unselected"); // <== Second parameter is optional here,_,
—because it defaults to "unselected"”
graph.draw () ;

The serie with the style red will automatically determine that it should be dashed, because it inherits from the style
unselected, which we just said should be dashed.

const graph = new Graph ("example-1");
graph.resize (400, 300);

let x = [1, 2, 3, 4];
let v = [1, 2, 1, 2];

let w = Graph.newWaveform() .setData(y, x);

let s = graph.newSerie('s').setWaveform(w) .autoAxis();
const unselected = {
line: {
width: 3,
}
}
const red = {
line: {
color: 'red'

}i

s.setStyle (unselected);
s.setStyle(red, "red", "unselected");
s.activateStyle ("red");

graph.draw(); // You won't see this, but at this stage, the serie is not dashed

s.setlLineStyle("4,4", "unselected");
graph.draw(); // Now it will be dashed

This code would display the following graph:

20 Chapter 4. Styling series

jsGraph Documentation

4.1.2 Object mutation

jsGraph allows you to mutate the style objects, but it asks that you warn him that the style has changed. This is done
for optimisations purposes: the style is not recomputed, nor applied, if it hasn’t changed. Because we don’t want to
start observing your objects, we just ask that you notify the serie of the change:

let coloredStyle { };
s.setStyle(coloredStyle, "colored");

// Later
coloredStyle.color = 'green';
s.styleHasChanged("colored");

Even if you change a base style that your derived style might be using, that’s fine, jsGraph will look at whether any
ancestor has been modified and if so, recalculate the whole derived style.

4.1.3 Activating a style

To activate a style, use the act ivateStyle with the name of style you want to apply. jsGraph does not redraw by
default, for optimisation purposes. You need to call graph.draw () afterwards.

s.activateStyle ("selected");

// or:

s.setActivateStyle ("selected");

// Finally, when you're ready to render:
g.draw () ;

4.2 Line series

For line series, three styles are available:
e The color
e The width
¢ The dashing

They are available through individual API calls or via the set St y1le method.

4.2.1 API calls

You may use the following method signatures to set the style of the line serie:

// Sets the line width

s.setlLineWidth (widthInPx, styleName = "unselected");

// Sets the line color

s.setLineColor('#FF0000', styleName "unselected");
s.setLineColor('red' /x, styleName... %/); // Or use a name
s.setLineColor('rgba (1.0, 0.0, 0.0, 1.0)"' /%, styleName... */);

// Set the line dashing
s.setLineStyle(1, styleName="unselected"); // Sets mode 1. See below
s.setLineStyle("4,4" /%, styleName... /) // Directly sets the stroke-dasharray SVG,_

—PIOpPEerty (continues on next page)

4.2. Line series 21

jsGraph Documentation

(continued from previous page)

|

There are 12 different modes, for you to use with a counter for example.
e 1: Straight line
e 2: 1px dots spaced by 1px
* 3: 2px lines spaced by 2px
: 3px lines spaced by 3px
: 4px lines spaced by 4px
: 5px lines spaced by 5px

: Long dashes, short gaps

.
o0} ~J o a1 > w N

: Short dashes, large gaps

* 9: Long dashes, alternating short and long gaps
e 10: Alternating dashed and dots

e 11: Very long dashes, short gaps

e 12: Short dashes, very long gaps

4.2.2 setStyle method

Use the setStyle method to set all three parameters at once. Consider the following snippet:

let style = {
line: {
color: 'red',
width: 4,
style: 2
}
}i
s.setStyle(style, "myStyleName", "unselected"); // <== Inherits from the unselected
—style, but that parameter is optional

4.3 Scatter series

Scatter series offer a lot of styling possibilities. You affect the shape, size and appearence of a “marker”, which is the
element that is displayed at each point of the serie. What’s interesting is that all markers of a serie need not be the
same ones. We offer a lot of possibilities to apply modifications.

22 Chapter 4. Styling series

jsGraph Documentation

4.3.1 Basic styling

You may use a javascript object that will directly be mapped to the SVG properties of the object:

let style = {

shape: 'circle',

cx: O,

cy: 0O,

r: 3,

stroke: 'transparent',

fill: 'black'

Will create the following SVG element

<circle cx="0" cy="0" r="3" stroke="transparent" fill="black" />

You can therefore use any SVG element available to you. The only reserved key in the object is shape, which of
course is transformed into the SVG node name.

4.3.2 Setting the style

For scatter series, use the setMarkerStyle or set Style method, with slightly more complex parameters:

let style = {

shape: 'circle',

cx: O,

cy: 0O,

r: 3,

stroke: 'transparent',

fill: 'black'

// Basic version
s.setMarkerStyle(style, "styleName", "inheritedStyleName"); // <== Second and third_,
—parameters default to "unselected"

// With modifiers (see below)
s.setMarkerStyle(style, arrayOrFuncOfModifiers, "styleName", "inheritedStyleName"); /
—/ <== Third and fourth parameters default to "unselected"

// Generic setStyle method
let gStyle = {
markers: {
all: style,
modifiers: arrayOrFuncOfModifiers

}i

s.setStyle(gStyle, "styleName", "inheritedStyleName"); <== Again, second and third
—parameters default to "unselected"

4.3. Scatter series 23

jsGraph Documentation

4.3.3 Modifiers

Maybe you want to draw attention to a specific marker. In that case, you can use the modifiers to set its properties.

You have two possibilities:

* You may either feed an array of any length, but where the index of the point you want to modify contains a

javascript that will extend the style at that position:

let modifiers = Array(n);

—with the color blue

modifiers[258] = { fill: 'blue' }; // <== Fills the point number 258

 Use a runtime method to determine the modifier on the fly (Be careful when using time sensitive applications)

—fill: 'red' } };

let modifiers = (x, y, index) => { return y > 0 ? { fill: 'green' } : {_

The following shows an example of using the style and modifiers:

const graph = new Graph ("example-2");
graph.resize (400, 300);

let x = new Array (200).£fi11(0) .map((x, index) => index / 20);

let v = [...x].map(x => Math.sin(x));

let w = Graph.newWaveform() .setData(y, x);

let s = graph.newSerie('s', {}, 'scatter').setWaveform(w).autoAxis();
const posModifier = { fill: 'green' };

const negModifier = { fill: 'red' };

const posNegStyle = {
markers: {

all: {
shape: 'rect',
width: 4,
height: 2,
x: -2,
y: -1
}V
modifiers: (x, y, index) => {
return index % 5 != 0 ? false : (y < 0 ? negModifier

—Display every 5 marker

}
}i
s.setStyle (posNegStyle, "posNeg");

s.activateStyle ("posNeg");
graph.draw () ;

posModifier) //.,

This code would display the following graph:

Note: When using a modifier method, return false to deactivate the marker rendering at that particular index.

24

Chapter 4. Styling series

jsGraph Documentation

4.3.4 Individual styles names

Modifiers work great if you want to highlight some of the markers using a special style. However, you can also assign
style names to each point independently. For example, taking the example above (and adding some animation onto it),
we could define two styles:

let neg = { shape: 'circle', r: 3, fill: 'red' }
let pos = { shape: 'rect', width: 4, height: 4, x: -2, y: -2, fill: 'green' };

s.setMarkerStyle (neg, "negative");
s.setMarkerStyle (pos, "positive");

s.setIndividualStyleNames ((s, 1) => s.getWaveform().get¥Y (i) > 0 ? 'positive'
— 'negative');

This would output the following graph

4.3.5 Enabling markers with line series

Line series extend from scatter series, but have markers by default disabled. If you want to use markers with a line
serie, use

s.setMarkers(true); // First parameter defaults to true, so s.setMarkers(); also,,
—enable markers

4.4 Closing example

Obviously, we can start mixing things up and have a little bit of fun:

const graph = new Graph ("example-4");
graph.resize (400, 300);

let date = Date.now();

let s = graph.newSerie('s', {}, 'line').autoAxis();
function d() {
let phase = (Date.now() - date) / 1000;

let x = new Array (200);
x = x.f111(0) .map ((x, index) => index / 10);
let v = [...x].map(x => Math.sin(x + phase));

let w = Graph.newWaveform() ;

w.setData(y, x);

s.setWaveform(w) ;

s.setIndividualStyleNames ((s, 1) => s.getWaveform().getY (i) > Math.cos (phase) 2
—'positive' : 'negative');

graph.draw() ;

let def = { line: { color: 'orange', width: 2 } };
let neg = { markers: { all: { shape: 'circle', r: 3, fill: 'red' } } }

let pos = { markers: { all: { fill: 'green' }, modifiers: (x, y, index) => index % 2
—== U 7 { till: "blue' F : null | f; (continues on next page)

4.4. Closing example 25

jsGraph Documentation

(continued from previous page)

s.setMarkers () ;
s.setStyle (def, "unselected"
—setIndividualStyleNames,
s.setStyle (negqg,
s.setStyle (pos,

"negative");
"positive",
graph.draw () ;

setInterval(d, 100);

Y; // In the scatter serie,

"negative");

this is overridden by,
but the line serie will take the

"unselected" style

That’s all we got (for now) !

26

Chapter 4. Styling series

CHAPTER
FIVE

AXES SPANNING

jsGraph allows you to have in a single graph more than one axis at the same position (top, left, right, bottom). Axes
don’t actually have to take up the 100% of the space, horizontally or vertically.

For example, let us imagine that you want to display different kind of data in the y direction (for example, speed, angle
and height), versus one single x axis (let’s say time), it might make sense to display all three series in different regions
of the graph, because the axes would have nothing to do with each other. . .

You can do that using the method axis.setSpan(spanFrom, spanTo), where spanFrom and spanTo must range between
0 and I and represents the position in percentage where the axis will start and end.

Note: With the x axis, 0 is always at the left, and 1 is at the right. With the y axis, 0 is the bottom, and 1 is the top
(inverse of the traditional SVG coordinates).

5.1 Basic example

To illustrate the setSpan method, let us make a nice graph with two y axes spanning from 0 to 45% and from 55% to
100%:

var dataColorado = [[2015, 17559.393], [2014, 17944.255], [2013, 18881.823], [2012,
—19263.158], [2011, 18744.067], [2010, 18978.981], [2009, 17351.28], [2008, 1896l.
—826], [2007, 19532.855], [2006, 19707.00899], [2005, 19013.11703], [2004, 19251.
—20903], [2003, 19595.836], [2002, 19446.04], [2001, 19764.97311;

var dataCalifornia = [[2015, 34522.242], [2014, 39213.757], [2013, 39474.651], [2012,
—38978.114]1, [2011, 42542.656], [2010, 41890.627], [2009, 39271.173], [2008, 42190.
—776]1, [2007, 41064.161]1, [2006, 41937.83301], [2005, 40352.02201]1, [2004, 39342.
—39199], [2003, 38521.048], [2002, 38604.897], [2001, 41305.26911;

dataColorado = Graph.newWaveform() .setData(dataColorado.map(e => e[1l]), dataColorado.
—map (e => e[0]));

dataCalifornia = Graph.newWaveform() .setData (dataCalifornia.map(e => e[1]),
—dataCalifornia.map(e => e[0]));

[

var graph = new Graph ("example—-1");

graph.resize (700, 300);

graph.getLeftAxis (0) .setSpan (0.0, 0.45).turnGridsOff () .setLabel ("Colorado");
graph.getLeftAxis (1) .setSpan(0.55, 1).turnGridsOff () .setLabel ("California");
graph.getBottomAxis () .setPrimaryGridColor ("rgba(100, 100, 0, 0.5)").setLabel ("Year

=M

graph
.newSerie ("colorado™)

(continues on next page)

27

jsGraph Documentation

(continued from previous page)

.setWaveform(dataColorado)
.autoAxis ()

.setYAxis (graph.getLeftAxis (0))
.setLineColor ("#CF4E4E™)
.setLineWidth (2);

graph
.newSerie("california")
.setWaveform(dataCalifornia)
.autoAxis ()
.setYAxis (graph.getLeftAxis (1))
.setLineColor ("#3EAG63E™)
.setLineWidth (2);

graph.draw() ;

This code would display the following graph:

5.2 Overlapping axes

One might wonder how jsgraph handles cases where axis spans overlap. For example axisA.setSpan(0, 55
) would clash with axisB.setSpan(50, 100). Insuch cases, jsGraph determines automatically such clashes
and offsets one of the axis (the one with the largest index in the stack) by a sufficient amount so that visual perception
is not deteriorated. In general, jsGraph will try to place as many axis in the first level, and perform iteratively for the
following levels. For example, if you have axisA.setSpan(0, 55), axisB.setSpan(50, 100) and axisC.setSpan(60, 80
), then axisC will be placed together with axisA because they don’t overlap. It will not appear on a third level.

In this particular example, it wouldn’t make much sense, but for the sake of it, here is how this example would turn
out:

var dataColorado = [[2015, 17559.393], [2014, 17944.255], [2013, 18881.823], [2012,
—19263.158], [2011, 18744.067], [2010, 18978.981]1, [2009, 17351.28], [2008, 1896l.
—826], [2007, 19532.855], [2006, 19707.00899], [2005, 19013.11703], [2004, 19251.
—20903], [2003, 19595.836], [2002, 19446.04], [2001, 19764.97311;

var dataCalifornia = [[2015, 34522.242], [2014, 39213.757]1, [2013, 39474.651]1, [2012,
—38978.114]1, [2011, 42542.656], [2010, 41890.627], [2009, 39271.173], [2008, 42190.
~776]1, [2007, 41064.161]1, [2006, 41937.83301], [2005, 40352.02201], [2004, 39342.
—39199], [2003, 38521.048], [2002, 38604.897], [2001, 41305.26911;

var dataKentucky [[2015, 664.166], [2014, 878.4341, [2013, 915.246], [2012, 1183.
—112], [2011, 1539.699], [2010, 1542.78]1, [2009, 1521.939]1, [2008, 1723.062], [2007,.
—1752.384], [2006, 1710.887], [2005, 1676.522], [2004, 1731.218]1, [2003, 1727.233]
—[2002, 1821.618], [2001, 1739.07]11;

dataColorado = Graph.newWaveform() .setData(dataColorado.map(e => e[1]), dataColorado.
—map (e => e[0]));

dataCalifornia = Graph.newWaveform() .setData(dataCalifornia.map(e => e[1l]),
—dataCalifornia.map(e => e[0]));

[

[

dataKentucky = Graph.newWaveform() .setData (dataKentucky.map(e => e[1l]), dataKentucky.
—map (e => e[0]));

var graph = new Graph ("example-3");
graph.resize (700, 300);

graph.getLeftAxis (0) .setSpan (0.0, 0.55).turnGridsOff () .setLabel ("Colorado");
graph.getLeftAxis (1) .setSpan (0.5, 1).turnGridsOff () .setlLabel ("California");

(continues on next page)

28 Chapter 5. Axes spanning

jsGraph Documentation

(continued from previous page)

graph.getLeftAxis (2) .setSpan (0.6, 0.8).turnGridsOff () .setLabel ("Kentucky");

graph.getBottomAxis () .setPrimaryGridColor ("rgba(100, 100, 0, 0.5)").setLabel ("Year

.newSerie ("colorado™)
.setWaveform(dataColorado)
.autoAxis ()

.setYAxis (graph.getLeftAxis (0))
.setLineColor ("#CF4E4E")
.setLineWidth (2);

graph
.newSerie("california™)
.setWaveform(dataCalifornia)
.autoAxis ()
.setYAxis (graph.getLeftAxis (1))
.setLineColor ("#3EAG3E™)
.setLineWidth (2);

graph
.newSerie ("kentucky")
.setWaveform (dataKentucky)
.autoAxis ()
.setYAxis (graph.getLeftAxis (2))
.setLineColor ("#2F7C7C™)
.setLineWidth (2);

graph.draw () ;

5.2. Overlapping axes 29

jsGraph Documentation

30 Chapter 5. Axes spanning

CHAPTER

SIX

SCIENTIFIC AXES

While displaying scientific plots, you might find yourselves fighting with units and unit scaling. jsGraph helps you

with that:
* Displaying scientific notation
* Displaying engineering notation
* Adding the SI prefix when scaling (mg, g, kg, ...)

Let us consider the following example:

const years = [1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989, 1990,
— 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
— 2006, 2007, 2008, 2009, 2010, 2011, 2012]1;

const coalConsumption = [0.020494449, 0.020919039, 0.021248864, 0.021850876, 0.
—02315959, 0.024146973, 0.024530887, 0.025317155, 0.026103415, 0.026055829, 0.

—026108312, 0.025206791, 0.024850082, 0.025047841, 0.025224058, 0.025698446, O.

—026416749, 0.026247128, 0.02613963, 0.026560849, 0.027977463, 0.028029715, O.
—-02855675, 0.030803576, 0.033055718, 0.034708407, 0.036478632, 0.038019204, O.
—038728538, 0.038927756, 0.041658958, 0.043534821, 0.043029446];

const g = new Graph ('example-1");
°)
.resize (500, 300)
.newSerie('coal_ consumption')
.setWaveform (Graph.newWaveform() .setData (coalConsumption, years))
.setLineColor ("#A52B11")
.setMarkers (true)
.setMarkerStyle ({ shape: 'circle', r: 4, £ill: '"#A52B11', stroke: 'white', |
—strokeWidth: '"2px' })
.autoAxis();

g.getBottomAxis () .setLabel ('year');
g.getLeftAxis () .setLabel ('"World coal consumption');
g.draw () ;

1991,
2005,

Although years are fairly easy to understand, there’s no unit in the y axis. What are we talking about ? Oranges ?
Burgers over Bald Eagles ? Or kWh ? Or btu ? Of course you could include it directly in the label, but we can do

better than that.

31

jsGraph Documentation

6.1 Setting axes units

Let’s start setting the unit of the axis:

// Setting the SI unit
g.getLeftAxis () .setUnit ('Wh') .setUnitWrapper('[', '1");

Obviously, the data we’re dealing with is not in Wh, but it is given to us in some retarded unit, the btu, or british
thermal unit. More specifically, in quadrillions of btus. (algthough we may wish for a coal-free world, we’re actually
going into the opposite direction). So we must scale the data accordingly. First of all, let’s transform all of this into
some normal SI unit, the Wh.

We could change the original data, but we could also make use of the waveform. set Scale method:

// Setting the SI unit
w.setScale (
(0.000293071 % 1000) // Conversion to Wh
*x lelb // there are quadrilions of them

Ok, it’s not looking pretty, but at least everything is in SI units, which is good. Let us see how we can play around
with the units.

Warning: If you change the scaling of a waveform after binding it to a serie, you should rebind it with serie.
setWaveform(w).

6.2 Enabling the scientific scaling

First up, enable the scientific scaling:

// Setting the SI unit
g.getLeftAxis () .setScientific(true);

Alright, now we’re talking ! The axis now uses scientific units, and adds the exponent in the label.

Note: Scientific scaling allows jsGraph to try to optimize the unit display. If you want to keep complete control of
the graph, you have access to the method setExponentialFactor, which scales the axis by 10" x but does not
affect the label. You may use it in the following condition for example:

// Force GWh display
g.getLeftAxis ()
.setScientific(false)
.setUnit ('GWh'")
.setExponentialFactor(-9); // Need to remove 1 billion to the Wh unit

However, note that there is also a possibility to force the exponent factor with scientific scaling (read on to find out
how).

32 Chapter 6. Scientific axes

jsGraph Documentation

6.2.1 Enabling the engineering scaling
Engineering scaling is a type of scientific scaling, but where the exponent is always a power of 3. This eliminates the

weird 10 '3 and replaces it by 10 > and multiplies all labels by 10. That’s normally a lot more natural if you’re dealing
when quantities, like time, mass, etc.

6.2.2 Forcing the exponent

When in scientific scale, force the exponent of the axis using axis.setScientificExponent (3), for ex-
ample, to display the axis in x1000 Wh.

6.3 Using unit decades

Instead of displaying 10" x in the scale, you may be interested in displaying a letter (e.g. n for nano, T for tera, etc. ..).
Use the setUnitDecade together with setScientificScaling for that purpose:

g.getLeftAxis ()
.setScientific(true)
.setUnitDecode(true);

See how now the data displayed is in TWh, instead of Wh x10 '3 .
jsGraph will replace the unit scaling by the following letters when appropriate:

e 10 £

e 102:p

«10°:n

« 10°%:

«103:k

«103:k

« 10°: M

«10°:G

«102:T

« 100 E

6.4 Log scale

We finish our discussion of the scientific axes by mentionning that you can ask the axis to display a logarithmic scale
(only in base 10 for now). Use:

const g = new Graph ('example-7");

let w = Graph.newWaveform/()
.setData (new Array(20)) // Use an empty array to define the length
.rescaleX (-3, 0.5) // x = -3, =2.5, -2, etc...

.math((y, x) => { return Math.exp(x) 1});

(continues on next page)

6.3. Using unit decades 33

jsGraph Documentation

(continued from previous page)

let s = g

.resize (500, 300)

.newSerie('log'")

.setWaveform (w)

.setLineColor ('#3£9169")

.setMarkers (true)

.setMarkerStyle ({ shape: 'circle', r: 4, fill: "#3£f9169', stroke: 'white', |,
—strokeWidth: '"2px' })

.autoAxis () ;

g.getLeftAxis () .setLogScale (true);
g.draw () ;

34 Chapter 6. Scientific axes

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

35

	Introduction to jsGraph
	TL;DR Show me an example !

	Installation
	Install with npm (recommended)
	Download from the Github repository
	Manual Download
	Include jsGraph in your projects

	Getting started
	Graph Constructor method
	Adding a serie

	Styling series
	Style inheritance
	Line series
	Scatter series
	Closing example

	Axes spanning
	Basic example
	Overlapping axes

	Scientific axes
	Setting axes units
	Enabling the scientific scaling
	Using unit decades
	Log scale

	Indices and tables

